
Technical Guide

Partner Interoperability Development Guide

Partner Interoperability Development Guide © 2020 EMSystems LLC. All rights reserved. Page 1 of 6

Overview

The Partner Interoperability Development Guide describes the secure web service interface that

Juvare provides to enhance system interoperability for its clients and partners. With this web service,

data is communicated using XML, which complies with data standards represented in XML schema

documents.

These schemas include:

• Hospital Availability Exchange (EDXL-HAVE), standard for hospital resource communication

• Tracking of Emergency Patients (EDXL-TEP), defines pre-hospital patient records

• Common Alert Protocol (EDXL-CAP), standard for emergency alert communication

Important: It is assumed that a business agreement between Juvare and the business partner is

in effect and the specifics of the data to be shared are understood by all parties.

Technical Overview

The following diagram shows the technologies used to communicate data between Juvare and a

partner system.

To Configure the Web Service

1. Work with Juvare to obtain a system ID and password, and request definition arguments.

2. Follow the development example outlined in this document to connect to a web service in

Juvare’s public test environment.

3. In the test environment, take these actions.

a. Enhance the service client code

b. Define the data dictionary of expected values

c. Identify the appropriate XML schema

4. Develop the transformation code between XML messages and system data structures.

Juvare ASP

Client
Configurations

Web Service Interface

getUpdate

Arg1: request Definition

postMessage

Arg1:
requestDefinition

Arg2: xmlMessage

Messages

Schema-compliant

messages are passed in

XML format using the

SOAP protocol over an

HTTPS connection.

Authentication credentials

are passed using HTTP

Basic Authentication

protocol.

Client or Partner

System

Partner Interoperability Development Guide © 2020 EMSystems LLC. All rights reserved. Page 2 of 6

Web Service Interface

Juvare provides a simple web service interface that is appropriate for most interoperability needs.

Connections are made over the TLS-enabled HTTP protocol (HTTPS). This provides security in the

form of encrypted communication and a certificate authority-verified connection to the hosting Juvare

server.

XML messages are packaged inside of SOAP envelopes. The web service is described using a

document or literal style WSDL. The WSDL file encompasses everything that a .NET or Java

generator utility needs to create custom stub classes that hide most of the web service code.

The partner system provides a username and password using the HTTP Basic Authentication

interface provided by their platform. This is conveniently supported in both .NET and Enterprise Java.

The interface consists of two methods:

Interface Name Arguments Return Value

getUpdate requestDefinition xmlMessage

postMessage requestDefinition xmlMessage successCode

The getUpdate interface can be used to poll for data, either as needed or on an ongoing basis. A

request definition XML string is specified as an argument, which resolves to a query for the specific

data of interest. An XML message is returned, which must comply with the data dictionary and the

XML schema determined by the developers.

The postMessage interface is used to upload data to Juvare. A request definition XML string is

specified along with the XML message as arguments that resolve to a customized display for Juvare

users. The XML message must comply with the data dictionary and the XML schema determined by

the developers.

Both interfaces expect the request definition XML string to follow the PartnerEndpoint.xsd schema

indicated below.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:tns="http://gateway.juvare.com/types"

targetNamespace="http://gateway.juvare.com/types" version="1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="getUpdate" type="tns:getUpdate" />

<xs:element name="getUpdateResponse" type="tns:getUpdateResponse" />

<xs:element name="postMessage" type="tns:postMessage" />

<xs:element name="postMessageResponse" type="tns:postMessageResponse" />

<xs:complexType name="postMessage">

<xs:sequence>

<xs:element minOccurs="0" name="String_1" type="xs:string" />

<xs:element minOccurs="0" name="String_2" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="postMessageResponse">

<xs:sequence>

<xs:element minOccurs="0" name="result" nillable="true" type="xs:string" />

http://gateway.emsystem.com/types
http://gateway.juvare.com/types
http://www.w3.org/2001/XMLSchema

Partner Interoperability Development Guide © 2020 EMSystems LLC. All rights reserved. Page 3 of 6

</xs:sequence>

</xs:complexType>

<xs:complexType name="getUpdate">

<xs:sequence>

<xs:element minOccurs="0" name="String_1" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="getUpdateResponse">

<xs:sequence>

<xs:element minOccurs="0" name="result" nillable="true" type="xs:string" />

</xs:sequence>

</xs:complexType>

</xs:schema>

Example: Connecting with a .NET Web Service Client

Step 1: Create a New Windows Application

1. Launch the Visual Studio application.

2. Open a new project by following the path: File > New > Project.

3. From the left side panel, follow the path: Visual C# > Windows.

4. From the .NET Framework center panel, select Windows Forms Application.

5. Create project name (Example: WebServiceClient) and insert it in the corresponding field.

6. Click OK.

Partner Interoperability Development Guide © 2020 EMSystems LLC. All rights reserved. Page 4 of 6

Step 2: Create a UI Form

Make your form look like the example below.

1. Add one button from the left sided Toolbox panel.

2. Add one text box from the left sided Toolbox panel.

3. Change the TextBox Multiline property to true.

Step 3: Rename the Output Text Box

• Rename the multiline text box to ResultTextBox

Step 4: Generate the Stub Code

1. In Solution Explorer, in the WebServiceClient project, right click the References node and

select Add Service Reference from the context menu. An Add Service Reference window

opens.

2. Enter the following URL in the Address input field:

https://emresource.lab.juvare.com/partnergateway/PartnerEndpoint?wsdl

3. Click Go.

Note: The service proxy is generated and will appear in the Services section.

https://emresource.lab.juvare.com/partnergateway/PartnerEndpoint?wsdl

Partner Interoperability Development Guide © 2020 EMSystems LLC. All rights reserved. Page 5 of 6

4. Security warnings may appear. Click No in each warning window.

5. Change the Namespace to Juvare.

6. Click OK.

7. Go to the application configuration file App.config and replace the xml element:

<security mode="Transport"/>

with the following:

<security mode="Transport"/>

 <transport clientCredentialType="Basic" />

</security>

Step 5: Add Event Handler Code

1. Double-click the button you previously added in Step 2. The source code Editor opens

displaying the event handling code.

2. Insert the following code.

using (var partnerService = new PartnerEndpointClient())

{

var clientCredentials = partnerService.ClientCredentials;

clientCredentials.UserName.UserName = "testuser";

clientCredentials.UserName.Password = "pass1234";

var action = "GET_STATUS";

var systemName = "EMRESOURCE"; var divisionName = "TEST_REGION";

string response; try

Partner Interoperability Development Guide © 2020 EMSystems LLC. All rights reserved. Page 6 of 6

{

response = partnerService.getUpdate(

$@"<?xml version='1.0'?>

<requestDefinition actionName='{action}'

systemName='{systemName}' divisionName='{divisionName}'>

</requestDefinition>");

}

catch (Exception ex)

{

response = $"Error invoking service {ex.Message}";

}

ResultTextBox.Text = response;

3. Add the Using statements at the top of this file: using WebServiceClient.Juvare;.

Note: If you named your project something other than WebServiceClient, you must use that

name in the first Imports statement above (Example: using WebLabStudio.Juvare;).

Step 6: Run the Test Application

1. Compile and run the application.

2. Click the Test Service button. You should see the following.

Need Help?

For more information, contact the Juvare Support Center by sending an email to

support@juvare.com or by calling 877-771-0911.

mailto:support@juvare.com

